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corrupted by noise. The proposed receivers combine the tensor signals for the multiple cooperative links
for joint channel and symbol estimation by coupling multiple rank-one tensor approximation problems.
The first one is a coupled-SVD based receiver that estimates all the involved communication channels
and transmitted symbols in closed form. The second one is an iterative solution based on alternating
least squares. The performances of both receivers are evaluated by means of computer simulations in
a variety of system configurations. Our results show the effectiveness of the proposed receivers and its

good performance-complexity trade-off in comparison with competing receivers.
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1. Introduction

In modern wireless communications, cooperative diversity is a
key concept to overcome the channel impairments, such as fading,
shadowing, and path loss, resulting in enhanced coverage and in-
creased system capacity [1-4]. In cooperative diversity infrastruc-
tures, multiple wireless links are established by using relay sta-
tions to help the communication between source and destination
nodes [5]. As a result, a virtual multiple input multiple output
(MIMO) system with increased spatial degrees of freedom is cre-
ated [6].

However, for achieving the potential gains of cooperative com-
munications, an accurate knowledge of channel state information
(CSI) associated with the multiple hops involved in the communi-
cation is necessary. Moreover, the use of precoding/beamforming
techniques at the source and/or relays generally requires instanta-
neous channel knowledge of the different links to optimize trans-
mission [7]. In practice, the CSI is unknown and is usually esti-
mated with the aid of training sequences. Also, in cooperative com-
munications, especially with multiple hops, impairments such as
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carrier frequency offset and timing offset become present in the
system. The references [8,9] present discussions and good solu-
tions to overcome these impairments. However, dealing with car-
rier frequency offset and timing offset is beyond the scope of this
work. We focus on the tensor-based receiver design for the multi-
relaying system to compare our receivers with the state of art so-
lutions in the literature.

In the past decade, the use of multilinear algebra for modeling
MIMO wireless communications has been growing [10-17], and has
resulted, more recently, in proposals of tensor-based receivers for
cooperative communication systems [18-24]. The main interest has
been on the use of tensor decompositions to model the received
signal as well as to derive receiver algorithms exploiting multiple
forms of signal diversity. Another feature of tensor-based receivers
is their build in semi-blind signal and channel recovery capability,
which avoids the use of bandwidth consuming training sequences
for channel estimation. Most of these works rely on generaliza-
tions of parallel factors (PARAFAC) [25] and Tucker [26] decomposi-
tions or hybrids of these decompositions, such as the PARATUCK-2
[21,24], Nested-PARAFAC [22,27] and Nested-Tucker [23] decompo-
sitions. It is worth to mention the references [15,17] where the ad-
vantages of using coupled-tensor solutions for parameter estima-
tion are presented, especially the work [17], where this coupling
approach is directly applied to array signal processing.
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Closely related to the present work are those proposed in
[18,22-24,27]. The authors of [18] develop a tensor-based chan-
nel estimation algorithm for two-way MIMO relaying systems us-
ing training sequences. In [20], channel estimation for a two-hop
MIMO relaying system is addressed via PARAFAC analysis, while in
[24], a supervised joint channel estimation algorithm is proposed
for one-way three-hop communication systems with two relay lay-
ers. Note that both Roemer and Haardt [18] and Cavalcante et al.
[24] propose pilot-assisted schemes. To avoid training sequences,
in [22] the authors deal with a semi-blind joint channel and sym-
bol estimation for a two-hop MIMO relaying system using a Nested
PARAFAC modeling approach. In a more recent work [23], a gener-
alization of Ximenes et al. [22] is proposed by adopting full space-
time coding at the source and the relay in a two-hop MIMO re-
laying system. Therein, the authors also derive two semi-blind re-
ceivers. The first is based on alternating least squares (ALS) esti-
mation while the second is a closed-form solution one based on a
two-step least squares Kronecker product (LSKP) factorization. Both
solutions in [23]| have shortcomings that may limit their applica-
bility. On the one hand, the ALS-based receiver requires the com-
putation of matrix inverses at every iteration, while the LSKP ac-
complishes channel and symbol estimation in two sequential steps
(2LSKP) being susceptible to error propagation. On the other hand,
supervised receivers such as that of Cavalcante et al. [24] assume
that the source transmits long training sequences, which we want
to avoid. The idea of joint channel and symbol estimation based
on a rank-one tensor modeling approach was originally proposed
in [28], and have shown to be a computationally attractive solu-
tion compared to the approach of Favier et al. [23].

In this paper, we propose two semi-blind receivers, that are ex-
tensions to the approach of Sokal et al. [28] by considering multi-
ple cooperative links in a three-hop MIMO relaying systems. We
start from the same system model as in [23,28], where tensor
space-time coding is used at the source and the relay stations,
which results in Nested Tucker models for the signals received
at the destination. We show how to convert the received signal
model of each relay-assisted link into a rank-one tensor, after a
pre-processing stage (space-time filtering) that exploits the multi-
linear structure of the space-time coding tensors. More specifically,
we first propose an orthogonal design based on a PARAFAC decom-
position of the space-time coding tensors with fixed rank, which
are properly chosen to satisfy an orthogonality constraint. Then, by
exploiting the proposed tensor codes and the multi-linear struc-
ture of the resulting received signal, we propose semi-blind re-
ceivers based on rank-one tensor approximations which yield ac-
curate and less computationally demanding estimates of the chan-
nels and symbols, compared to competing state-of-the-art tensor-
based receivers. The proposed receivers also combine the signals
from different cooperative links for joint channel and symbol esti-
mation by coupling multiple rank-one tensor approximation prob-
lems as a single problem.

In summary, the main contributions of this paper can be listed
as follows:

1. We show that the joint-semi-blind channel and symbol estima-
tion in a two-hop MIMO relaying system can be made simpler
by exploiting the tensor space-time coding structure at the re-
ceiver, which allows replacing a Nested Tucker model fitting by
a Kronecker approximation problem after space-time combin-
ing/decoding. More specifically, following the idea proposed in
[29], we propose a rearrangement of a N-factor Kronecker ap-
proximation problem into a Nth order rank-one tensor approxi-
mation problem, the solution of which delivers estimates of the
involved communication channels and transmitted symbols at
high accuracy and low complexity;

2. Two semi-blind receivers are proposed that couple the tensor
received signals of the multiple relay links via rank-one ten-
sor approximation problems while exploiting cooperative di-
versity in different ways. The first algorithm, referred to as
coupled-SVD (C-SVD), estimates all the involved communica-
tion channels and transmitted symbols in a closed form. The
second solution consists of a coupled alternating least squares
(C-ALS) algorithm that combines estimates from multiple coop-
erative links while avoiding matrix inversions due to the rank-
one property of the involved signals. As will be discussed later,
the C-SVD receiver becomes more attractive than the C-ALS in a
low energy per symbol to noise power spectral density (Eg/Ngp)
regime, due to the number of iterations required for the C-ALS
to converge, also in scenarios where the code length of the
space-time coding tensors at the relays is small.

The rest of this paper is structured as follows. In Section 2, we
present the least squares Kronecker approximation problem and
link it to a rank-one tensor approximation problem. In Section 3,
we describe the system model. The pre-processing stage performed
by the receivers is detailed in Section 4. The proposed C-SVD and
C-ALS receivers are formulated in Sections 5.1 and 5.2, respectively.
Simulation results are presented in Section 6 and the paper is con-
cluded in Section 7.

1.1. Notation and properties

Scalars are denoted by lower-case letters (a,b,...), vectors by
bold lower-case letters (a,b,.), matrices by bold upper-case let-
ters (A, B,.), tensors are defined by calligraphic upper-case let-
ters (A, B,...). AT, A}, A*, A" stand for transpose, Moore-Penrose
pseudo-inverse, conjugate and Hermitian of A, respectively. The
operators ®, ¢ and o define the Kronecker, Khatri-Rao and the
outer product, respectively.

For a matrix A € C'*R, the vec(-) operator vectorizes a matrix
by stacking its columns, i.e., vec(A) =a e C®x1  while unvec(-)
does the inverse operation, i.e., unvec(a) = A € C*R, The frontal
slices of a third-order tensor X € Cl1*2*}5 are matrices denoted by
X i, € C2 with iy = {1, . I},

For an Nth order tensor X € Ch> I there are several ways to
matricize it. The n-mode unfolding of & is the matrix defined as
Xy € Chxhieliihia-Iv The generalized unfolding is the matrix
where the rows and columns are defined by grouping a subset of
dimensions. For instance, consider the case of a fourth-order ten-
sor G e CPJxKxL “the generalized unfolding [G]((1 3),(2.4y € CKL is
formed by grouping the first and third dimensions (I and K) along
the rows while grouping the second and fourth dimensions (J and
L) along the columns, see [30].

The n-mode product between a tensor X e Ch**Iv and a ma-
trix A € O1*l1 is defined as Y = X x; A, where Y e ¢Jixhx-xIy,
so that Yy = AX(jy € Zi*xl2~Iv, Consider two third-order tensors
X eCh~R<; and y e CRixk2, where the dimension of the 2-
mode of X is equal to the dimension of the 1-mode of Y. The (2,1)-
mode contraction between these two tensors is symbolized by
g=2X 0% ., ie., gi1i2j1j2 = Zl::] Xi1Tf2yrj]jz’ where G e Chxlaxixla, A
rank-one third-order tensor is defined as the outer product of three
vectors and is symbolized by X e Cli*kx —acboc, with a ¢
ch=1 p e Cch*l ¢ e Ch*1. Note that vec(aoboc) =c®b ®a. We
make use of the following properties

(A® B)(C®D) = AC®BD (1)

vec(ABC) = (CT @ A)vec(B) (2)

vec(AD,(B)C) = (CT 6 A)b], (3)
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where D;(B) is a diagonal matrix formed by the nth row of B, and
bl is the transposition of the nth row vector of B. Given a third-
order PARAFAC tensor X = Zg x1 A x5 B x5 C e Ch kx5 jts frontal
slices are given by

X i, = AD;, (C)BT e CI*%, (4)

where i3 = {1,...,13}, and A e Ch*R B e C2*R, Ce CBh*R are the
factor matrices, and R is the tensor rank of X.

2. Kronecker product approximation

In this section, we show how to recast a three-factor Kronecker
factorization problem into a third-order rank-one tensor approxi-
mation. Such a link will play a key role in the design of the pro-
posed receivers.

Consider the following minimization problem

min ¢(A.B) = [X —A®BJ|,. (5)
AB

where A e Ch*R2 B e Cl'*R1 and X=A®B+V e Chl2xRiR2 and v
contain zero-mean uncorrelated noise. For the problem in Eq. (5),
the authors in [29] proposed a solution based on a rank-one ma-
trix approximation (via SVD) of X (a permuted version of X con-
structed according to Van Loan and Pitsianis [29]). The problem in
(5) becomes

min ¢(a,b) = [X-boal . (6)
ab

meaning to find the nearest rank-one matrix to X, where a=
vec(A) e ChR2x1 and b = vec(B) € ChRi1x1, The Kronecker approx-
imation problem in (5) has been exploited previously in the lit-
erature. In [31], Kronecker product approximations are derived for
three-dimensional (3-D) image processing applications. By linking
the problems to tensor decompositions, the authors show that
a Kronecker-structured matrix approximation problem can be re-
duced to a computationally tractable problem involving third-order
tensor. This link is exploited to derive Kronecker approximation
preconditioners for iterative regularization. In [32], the authors
proposed a solution generalizing [29] to a Kronecker product in-
volving N factor matrices. However, our proposed solution is di-
rectly related to rank-one tensors.

In this work, we are interested in solving this problem for
N = 3, which is the case of the proposed MIMO multi-relaying sys-
tem discussed in the following sections. To this end, consider the
following problem

min ¢(A,B,C) = | X-A®B& (|, (7)
AB.C

where AeCh*fs BecCh*R and CecCl*Ri, The problem in

(7) now becomes

min ¢(a,b.¢) = [X-agbec|;

a,b.c
minq&(c,b,a):”f—cOboa’F, (8)
cba
(1) (1)
Panl 0 [Palss)
M ' (1)
[P<12~1)} T [P(12,1{2)} PE?’])
D = :
(1) (1)
[P(1,1)} oo [P('I‘Rz)}
e A %)
[P(Iz,l)] o [P(IQ,RZ)] P

(I3,1)

where a=vec(A) e CRsx1 b =vec(B) e CRx1, ¢ =vec(C) e
ChRix1 We have that X = vec(X) and X = T{X} € CliRixhRyxI3R;
where the operator 7{-} maps the elements of X into X, as follows

XG4 (-1 +@5-1) Qi 7 Yoaa 9)

where g; = {1,...,Q;} and Q; = [;R;, with i = {1,2,3}.

Hence, finding the matrix triplet {A, B, C} that solves (7) is
equivalent to finding the vector triplet {a, b, ¢} that solves (8), i.e.,
the solution of a Kronecker approximation problem can be recast
as the solution to a rank-one tensor approximation problem, for
which effective algorithms exist in the literature (see, e.g., [33-35]).
Here we generalize the block-matrix arrangement from Van Loan
and Pitsianis [29] to map X to X resulting in a rank-one tensor
approximation problem.

Let us define D = A® B® C e Cl1kixRiReRs Dye to its Kronecker
structure, this matrix can be viewed in three different ways (block-
division): First, as a block matrix of size I;I5 x RyR3, each element
of which being a matrix of size I; x R;. Second, as block matrix
of size I3 x R3, each element being a matrix of size I1I; x R{R;
formed by the block BQC. Third, the same matrix can be viewed
as the total matrix D. Our goal is to rearrange the elements of
D into a matrix D whose vectorization can be factored by a Kro-
necker product of three vectors, i.e., d=ag@b®c, where d=
vec(D) e ChRibRBR3x1 Fig 1 provides an illustration of this map-
ping, where each block PEH) is a matrix of size I; x Ry, each block

Pg),) is a matrix of size I;I, x R{R,, and the block P(3) is the to-
(n)

tal matrix of size I;I;I3 x RiRyR3. The upper index n of P(l. )
dicates the block division, with ne{1, 2, 3}. The lower indices (i,
j) indicate the position of the matrix block PE?;) inside the ma-

trix block pggj)”, where i={1---bL}, j={1---Ry}, k={1---I},
I={1.--Rs}, and n+1 < 3.

Let G ;) be a matrix of size I;Ry x IR, each column of which

in-

is the vectorization of the matrix block Pm) (defined as p(?). with

()
size [1R; x 1) belonging to the bigger block Pgi)l). We have
G — oM (1) 1)
Gy = [Pl1ys -+ Py -+ Py o2, - (10)

(k.Iy

Finally, we define ﬁgf size I;R1I;R, x I3R3 by collecting the column
vectors gy ;y = vec(G py) of size [1R1I;R; x 1, as follows

BZ [E(L]),.. .A,E(ILR})]I)G). (11)

By applying the vec(-) operator, we get d=a®b ®c. Since the
Kronecker product is directly related to the outer product, it fol-
lows that

D=coboa, (12)

where D = T{d} e ChRixR2xI3R3 js 3 third-order rank-one tensor
formed by the “tensorizing” d e Cl1R1hR23R3x1 Note that the rank-
one tensor formulation described in this section can be extended
to higher orders from a Kronecker factorization involving N > 3 ma-
trices, but we keep the focus on the case N = 3 due to the present
context.

- &11)s -

POyl - [Pk |
[Pgi;l)} [Pﬁ}i,nzﬂ &,
PP PG r)]

[ng,l)} [PE;Z’:’R”’} Ponsd pon

Fig. 1. Matrix D and its block structure.
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Fig. 2. MIMO multi-relaying system.

3. System model

We consider a multi-relaying MIMO system where the source
is assisted by two half-duplex relays using the AF protocol. In this
system, Mg denotes the number of transmit antennas at the source
and Mp is the number of receive antennas at the destination. Re-
lay 1 is equipped with M; antennas, from which Mg, antennas
are used for transmission and Mg, for reception. Likewise, M, de-
notes the total number of antennas at Relay 2, with Ms, transmit
antennas and Mg, receive antennas. Fig. 2 provides an overview
of the system model. The transmission of information from the
source to the destination via the multiple relays involves a three-
phase transmission scheme. In the following, the tensor-based sig-
nal model for each phase is formulated using tensor n-mode prod-
uct, slice, contraction operations. This formalism is essential to ob-
tain the received signal model at the destination as a basis for de-
riving the proposed semi-blind receivers. It is important to men-
tion that all the processing is performed at the destination, i.e., the
relay station only codes the signal and forwards it. Moreover, for
simplicity, we assume perfect timing synchronization at the relays
and destination.

Phase 1. The source transmits the signal to Relay 1 and Relay 2.
The symbol matrix S € CN*R contains R data streams of N symbols
each. These data streams are encoded at the source by means of a
space-time coding tensor C € CMs*RxP \where P is the code length.
The transmitted signal tensor X©) e CMs*NxP js given by the fol-
lowing n-mode product and slice matrix product as:

X® =Cx,S (13)

X =S e CMxN, (14)
Each symbol is repeated P times over the Mg antennas creating
a space-time redundancy, i.e., we have P time-slots with N sym-
bols each. Considering HSR) e CMki>*Ms a5 the channel between
the source and the Relay 1, and HOR2) e cM*Ms a5 the channel
between the source and Relay 2, the signal received at Relay 1 is
the tensor AR e cM P and can be written, in n-mode prod-
uct and slice notation, respectively, as

R — x®) s HORD 4 (SR) (15)

x,(i)Rl) — H(SR1)X'(.-;) +v'(§)R1) c (CMR] ><N7 (16)
where VORD) ¢ MR *N*P s the additive white Gaussian noise
(AWGN) at Relay 1. The signal received at Relay 2, x(R2) ¢

CcMry *N<P i given by
X OR2) — x©) X1 H®R2) 4 1(©R2) (17)

xf.;Rz) — H(SRz)in)) +v§.;Rz) c (CIVIR2 ><N’ (18)

where VOR2) ¢ cMr*N<P s the AWGN tensor at Relay 2.

Phase 2. Since we are considering half-duplex nodes, the source
stays silent and only one relay transmits in this phase. Without
loss of generality, let us assume that Relay 1 transmits and Relay 2
stays in silent. In this case, the signal xR received in the previ-
ous phase by Relay 1, is coded and forwarded to Relay 2 and to the
destination. A space-time coding tensor W e cMs1>Mry i ysed for
this purpose, assuming Ms, transmit antennas. Similarly to Phase 1,
a space-time spreading structure is created, having now J frames,
each with P time-slots. Defining H®1R2) ¢ cM&*Ms1 35 the chan-
nel connecting Relay 1 and Relay 2, and HRiD) ¢ cM0*Ms; a5 the
channel between Relay 1 and the destination, the signal received
at Relay 2, XSRiR2) ¢ cMr NP g giyen py

Ky ORiRy) w .; X(SRI)) X1 H®RiR2) + YSRiR2)
=W x4 H(R1R2)) .; X R 4 PORiRy)
= FH{RiR2) .; X GR)  PGRiR2) (19)

X,(;j};]RZ) — H(RIRZ)W“J'X_(_%R‘) + V,(js_f;lRZ) € CMr, <N, (20)
where VORiR2) ¢ My P*N<P i the AWGN at Relay 2 (in Phase 2),
while 7 R1R2) = x; HRiR2) ¢ M *Mr ) i the effective channel
tensor. The signal xRiD) ¢ CMpx/xNxP recejyved at the destination
can be written as

XORID) _ y(RiD) g1 (SR1) | 1y(SRiD) Q1)

XERP = HEDW XG0 4 VERP e e, (22)

where VORiD) ¢ cMpxJxNxP js the AWGN at the destination, and
HRD) =y x; HRiD) ¢ cMo*Mry ) s the effective channel tensor.

Phase 3. Now, the source and Relay 1 stay silent while Relay
2 transmits the signal received in Phase 1 (X©R2)) and in Phase 2
(X©RiR2)Y to the destination. For this transmission, the Relay 2 con-
catenates the signals XR2) along the second mode of the tensor
XOR1R2) 35 follows

X = X(5R1R2) Ly X(SRz) c (CMRZX(]-H)xNxP (23)
where X (1, = XORiR) g My x)<NxP

— X(SRZ) c CMR2X1XNXP.

X g+1)..
The concatenated signal is coded by means of a space-time cod-
ing tensor 7 e C52*M& K and forwarded to the destination us-
ing Ms, transmit antennas. The coding tensor introduces an ad-
ditional space-time spreading to the forwarded signals, by cod-
ing information across K super-frames. This results in P(J+ 1)K
channel uses. Let HRD) ¢ cM>*Ms, pe the channel between Re-
lay 2 and the destination. The signals received at the destination

FRIRD) o oMpxKx(+1)xNxP are then given by

TP _ gD 1 4 el (24)

< (SRiR2D) R,D <> o (SRiR:D) MpxN

Xiiiinp =HEDT X ip), + Vi), € C (25)
35(SR1R2D) Mp xKx (J+1)xNxP 3 i i

where V e CVp is the AWGN at the destination,

and H®D) = 7 5 ; HR2D) ¢ cMp>Miy *K i the effective channel.

The goal of the proposed receiver is to combine the three tensor
signals at the destination, namely X ©RiD) yRD) -~ and x (SRiR2D),
By combining all tensor signals coherently at the destination, co-
operative diversity is exploited to jointly estimate the symbols and
channel matrices, as will be shown later.
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4. Pre-processing stage

This section discusses the pre-processing stage applied before
the channel and symbol estimation. It consists of a space-time fil-
tering that exploits the knowledge and the multi-linear structure
of the coding tensors (C, W and T).

First, let us consider the signal XR1D) received at the destina-
tion from Relay 1 during Phase 2. From Eq. (22), ignoring the noise
term, and replacing XﬁRl) as in Eq. (16), we have

xffﬁlD) _ H(R1D)W”jH(SR1)C“pST. (26)

Making use of Property (2), and defining xfgw) =vec(XFfﬁ‘D )),
yields

L) (S W uec( HOTC,)
— (S ® H(R1D)) (ch ® W__]')VeC(H(SR1))

= (vec(H(s’“))T ®S® H(RID))VEC(CTP oW ;).

MpNxMs, RMp,

Let us define YORD) ¢ ¢ Ms the matrix

YORD) = vec(HOR)T @ § @ HED), (27)

by collecting the JP vectors {xff';1D)}, j=1,....J, p=1,....P as
column vectors, we form [XCRD)] ;5115 4 € CMDN3IPwhich is a

generalized unfolding of x®1D) | that can be written as
[XSRD 41 3 2.4y = [YFPvec(CT @ W 1), ...,
YSRDyec(CT, @ W )] = YORDIZMD), (28)

where Z() e cMsifMRMsIP g the effective coding matrix whose

columns are {vec(CTp QW ph j=1,....J p=1,..., P, represent-
ing the space-time filter. Adding the noise term in Eq. (28) we have

[XSRD (1 3 2.apy = YORDIZD 4 [WERD 4505 4y, (29)

where [V'ORiD)] ;515 41 is a generalized unfolding of the global
noise tensor V'RiD) ¢ cMpxJxNxP "which is composed by the noise
term VR filtered by 7(®Ri1P) and added to the VSR1D) at the des-
tination. The tensor V'SRiD) can be expressed as

V/SRID) _ (g7 (RiD) o YORDY L PORID) ¢ CMpx/xNxP
. . (SRR, D) S

Now, consider the signals X at the destination com-

ing from Relay 2, defined in Eq. (24). Note that this tensor

signal concatenates contributions from Relay 2 in Phases 1 and

2 (cf. Eq. (23)). More specifically, we have xF1f2P) _ 57(R;0) o)

(A ORiR) 1y x($R2)) - e CMoxKxU+1DxNxP  The destination extracts

these two signals from FRikoD) by separating the first J ten-

sor slices to form the tensor signal xSRiR2D) ¢ CMpxKxJxNxP \yhjle

the (J+ 1)th slice is used to form the tensor signal X©RD) ¢
CMpxKxNxP

In a way similar to Eq. (25) and using Eq. (20), we can write
the noiseless signal X SRiR2D) in matrix slice notation as follows

x.(]f};RZD): H(RZD)T”[(XS?I;1R2)
= HEOT HEBW X G (30)
= H®&DT HRRDW HEROC ST,
Applying Property (2) multiple times, and defining Xpip=
vee(X 1) yields
Xejp = (S ® HED)vec(T (HMFIW jHERDC )
= (S H®D)(CT, ® T ;)vec(HFFIW jHER)
= (SeH®D)(CT @ T ) (HFT @ HER) )vec(W ;).

By collecting all the J frames, we get

x,kp = (S ® H(RzD)) (CTP ® T..k) (H(SRl)T ® H(R1R2))W'{3) c CMDNX]’
(31)

where W3 € cMsi Mgy XJ

time coding tensor W e cMsi

is the 3-mode unfolding of the space-
*Mry*J " which is a matrix whose

*

columns are {vec(W ;)}, j=1,...,J. Defining X"kAp = X'k.pWG) €
CMpN>Ms, Mk, yialds
Xip= S@H®)(CT, 0T ) (HEWT @ HER), (32)

Applying Property (2) in Eq. (32), with xjc_p = vec(kalp), yields

X, = (H) @ HRRT @ § @ HRP )vec(CT, T ).

Let us define Y(SRiR2D) ¢ ¢MpNMs, Mg, xMs, RMg, Ms

Y©RiRD) _ HOR1) o HRiRIT o §  HR2D) (33)

by collecting the KP vectors {xL‘p}, k=1,....K, p=1,....P

as column vectors, we form the matrix [X'SRiRD)] ;5155 €
CMoNMs, My, xKP

[X/SRIRDI] 11 431105 = [YORRPlvec(CT, @ T 4). ...,
YOREDyec(CT, @ T )] = YORRDIZ®

where Z@ e cMsRMRMs3KP i the effective coding matrix whose

columns are {vec(CTp ®T )}, k=1,...,K, p=1,...,P, represent-
ing the space-time filter.

Note that [X/CRiRD)] (1 4 315 5)) also can be viewed as the gen-
eralized unfolding of the following filtered tensor

X/(SRIRZD) — X(SRIRZD) X3 Wl(-l3) c (CMDXKXMsl Mg, ><N><P.

Now, taking into account the noise term, we have
[X/CREDI] (3 31,5y = YORRDIZZ) o [WORRD (1) o 5. (34)

where [V'CRiRD)] 143105 is the generalized unfolding of the

global noise tensor filtered by W&), given by

VP/SRiR:D) [7:[(R2D) .% [(}'[(Rsz) .5 V(SRI)) + V(5R1Rz)] + V(SRleD)]

x3 Wl(-l3) € (CMD ><K><M5] MR1 ><N><P.

From Eqs. (29) and (27), we can formulate the following three-
factor Kronecker approximation problem

; r)nin o YERD) _ yec(HOR: >)T ®S o HRD
HCR) S HR

(35)

F

where the solution
?(SRID) _ [X(SRlD)]([]’3“2’4])2(1)H (36)

is the received signal tensor filtered by the effective coding ma-
trix Z(V, Likewise, from Eqs. (34) and (33), we can formulate the
following four-factor Kronecker approximation problem,

m “?(SRleD) _ H(5R1) ® H(Rle)T RS® H(RZD) H . (37)
HORD HR1R2) § H(R2D) F

The solution of (37) is given by
YORiR:D) _ [X(SRleD)]([114’3142’5])2(2)]'[, (38)

which corresponds to received signal tensor at the destination fil-
tered by the effective coding matrix Z(2),

We design Z(M e cMsifMrMsx<IP 3nq 72 ¢ ¢ as
semi-unitary matrices, i.e., ZOZOH — IMSiRMRiMS’ i=1,2. As shown

Ms, RMg, Ms xJP

in the Appendix A, if a PARAFAC decomposition is assumed for
the coding tensors, then Z(1) and Z() are 3-mode unfoldings of ef-
fective space-time coding tensors representing a combined source-
relay coding operation. Interestingly, these effective coding tensors
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also satisfy a PARAFAC decomposition structure, which greatly sim-
plifies the receiver design. Note that a semi-unitary property is also
assumed for WTB), defined in Eq (31). For the reader’s convenience,
the details about the design of the space-time coding tensors and
the proof of the semi-unitary properties of Z(!), Z(2), and W{3) are
given, respectively, in Appendix A and Appendix B.

Now, we capitalize on the conceptual link between the Kro-
necker product approximation (7) and the rank-one tensor approx-
imation (8). By applying the block-matrix rearrangements intro-
duced in Section 2, we map the matrix YSRD) to a third-order
tensor PRiD) ¢ cMoMs NRMp, Ms \yhich approximately has rank-
one, i.e.,

PERID) o, hRID) (g o RORD. (39)

In a similar way, for the received signal tensor X©RD) e
can find an approximation to a rank-one tensor P©RD) ¢
CMoMs, <NRxMi, s g by

PORD) ~ f(RD) g o hSRe), (40)

Finally, for the received signal tensor X SRiR2D)  applying the block-
matrix mapping of Section 2, a rank-one approximation to the fol-
lowing fourth-order tensor will be solved at the receiver

—(RiRz)

PORIRD) o f(RD) g o 7 o pSR) (41)

with P(SRiRD) ¢ MpMs, xNRxMs, Mg, xMg, Ms and H(Rle) _
vec(HR1R)T),

4.1. Design requirements

To solve the Kronecker approximation problems (35) and (37),
the effective coding matrices Z(1), Z(2), Wg) must have full row-
rank to be right invertible. As we have discussed before, we choose
a semi-unitary design for these matrices, which naturally fulfills
such a requirement, while avoiding the calculation of pseudo-
inverses. Hence, in terms of system parameter choices, we obtain
the following inequalities that have to be satisfied by the proposed
design:

P>F > MR, (42)
J = E = Mg, Ms,, (43)
K > F; > Mg, Ms,. (44)

The proof of (42)-(44) is given in the Appendix C.
5. Proposed semi-blind receivers

In this section, we derive two semi-blind receivers that com-
bine the tensor received signals of the multiple relay links via cou-
pled rank-one tensor approximation problems while exploiting co-
operative diversity in different ways. The first algorithm, referred
to as coupled-SVD (C-SVD), illustrated in Fig. 3, estimates all the
involved communication channels and transmitted symbols in a
closed form. The second solution consists of a coupled alternat-
ing least squares (C-ALS) algorithm that combines estimates from
multiple cooperative links while avoiding matrix inversions due
to the rank-one property of the involved signals. Before present-
ing the proposed receivers, we start with the tensor-based mod-
els for the signals received at the destination from the two re-
lays during Phases 2 and 3, respectively. Exploiting the orthogonal
PARAFAC decomposition of the space-time coding tensors, we cast
joint channel and symbol estimation as coupled rank-one tensor
approximation problems.

C-SVD Receiver

1 S

i
'
'
\
!
izl B
((SR1R2D), | ZASR1R2D) " i oo LLAey
: =) L P, ORI | 1
— | = 2 CT N
i 7 o I
JXSR1D) if @ |7ASR1D) 2 | svo LA
=+ 8 = e '
€ 1
\X(SRZD) ' Q'T ﬂSRZD) § P svo :H(SR2)
P & e P | P
: o é P o, | v | | Heeo)
| ) — L
' o) 7 '
' | A
' svo | H
! 1

Fig. 3. Block diagram of the C-SVD receiver.

5.1. C-SVD receiver

After the space-time decoding stage, the destination extracts
three noisy rank-one tensors given by (39), (40), and (41). In the
following, let us recall these three tensors for convenience

PpBRD)  hRID) g o RORY) (45)
PBRD)  RRD) g o RR) (46)
PORiRD) ~ pReD) g H(R]RZ) o hGr) (47)

The Coupled-SVD receiver combines these tensor signals to
jointly estimate symbols and channels estimation by means of
SVDs of appropriate n-mode unfoldings. First, we consider symbol
estimation. By coupling the tall 2-mode unfoldings of these ten-
sors, we have

(SRiD)T
PO ) (hGR) @ h(RiD))
pGRDIT (hR2) @ h(RD)) sT. (48)
pORIRDT (hSt) @ W™ @ h®:D)

()
Eq. (48) is an approximation to a rank-one matrix. Computing the
SVD of (48) as UsXVH, the first right singular vector only pro-
vide us a basis, i.e., § = aﬂl;‘(:{]), where ¢/ is a scalar factor that
compensates the orthonormal basis from the SVD. Assuming the
knowledge of one symbol, say, S(1;), the scalar factor is found as

o = S(l_l)/Vgﬁ(],]). At the end, the transmitted symbol matrix is ob-

tained by applying the unvec operator, i.e., § = unvec() e CV*R,

To estimate the channel h®2D), the matrices PE?')QZD)T and

PEf’;leD)T, denoting the tall 1-mode unfoldings of the tensors
PORD) and PGRiR2D) respectively, are coupled to form another
rank-one matrix, as follows

(h(SRz) ® s)

pRD)T
(1) ~ (RyD)T
|:PE.191)Q1R2D)Tj| ~ |:(h(SR1) o B o s)i|h 2 (49)

By computing its SVD as U®RD) ¥ RDy®:DH e have that
A®R2D) — unvec(h®D)) e cM>>*Ms,  where A(R2D) — azvgf‘zll)’)* and
s WD

For the estimation of the channel between source and Relay 1,
the C-SVD receiver couples the tall 3-mode unfolding of P(RiD)
with the tall 4-mode unfolding of P©RiR2D) | yielding another rank-
one matrix approximation as

(SR{D)T (R,D)
|:pl:s<1%1)RzD)T] ~ [ 7(R1$e§)®h 2R D) i|h(5R1>T~ (50)
(4) (h ® s @ htkD))

Computing the SVD of (50) as USRD) XSRDYGSRDH  the channel is
estimated as h(SR1) = a3\l$,5’§1))* with a3 = HE?R;))/VgR]l;*. To elimi-
nate the scaling ambiguitiéé in the estimated Ehannels. the knowl-
edge of one entry of each channel matrix suffices. In practice, a
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training pilot can be used to estimate the unknown channel coeffi-
cient beforehand. However, this training-phase will not be counted
in the system transmission rate, due to the fact that the total num-
ber of symbol periods needed in this phase is too small compared
to the total time redundacy in the proposed system. The same as-
sumption was adopted in Ximenes et al. [22] and Favier et al. [23].
The C-SVD algorithm is summarized in Algorithm 1.

Algorithm 1 C-SVD.

1: Inputs: PSRiR2D) p(RiD) apd pGReD)

2: Estimate the system parameters computing rank-one SVDs and
selecting the right dominant singular vector from the following
unfoldings:

§: from Eq. (48);

h®2D): from Eq. (49);
AR from Eq. (50);
A®D): using PE??‘D)T;

h(SRY) - q1ci (SRyD)T,
hGR2): using P52

2(R1Ry)
A (SR{R,D)T,
h : using P(3) ; o X X
3: Apply the unvec operator to recover S, H®D) AR H®D)

R ~ (RyRy)T
HGS2R and H( ) .

4: Remove the scaling ambiguity according to the knowledge of
one element in each system parameter factor matrix.

5.2. C-ALS receiver

The Coupled-ALS receiver is based on the well-known trilinear
alternating least squares (ALS) algorithm [36], which provides esti-
mates of the channel and symbol matrices by solving LS problems
in an alternating way. Despite its conceptual simplicity, the ALS al-
gorithm may suffer from convergence problems due to its sensi-
tivity to initialization. Moreover, each iteration of trilinear ALS in-
volves three matrix inverses, which can be computationally com-
plex depending on the tensor dimensions. In our context, how-
ever, the problem is simpler since we are dealing only with rank-
one tensor approximations avoiding the computation of matrix in-
verses, while yielding fast convergence of the algorithm, which is
usually achieved within a few iterations. It is worth mentioning
that other algorithms exist in the literature to solve the rank-one
tensor approximation problem [33-35].

Using Egs. (48)-(50), and the unfoldings P$%2)T

, pCRIDT 3pg

3) (1)
PglileD )T, the C-ALS receiver solves the following cost functions
pskioT AR @ RRD) 2
§ =argmin| | PSOPT h(SRZ)(;?Rh)(RzD) s (51)
S ~ -1 ~
Pt AR goh @ h®D)
(D) " ] he®) 8 (R,D)T 2
h®P) — argmin L - ~(RiRy) h(®
h(RD) [Pﬁ’fleD”_ ik goh 3§
(52)
£ sk ES})IlD)T i® ﬁ(RlD) - 2
h®®) = argmin 3 — | a®ir) . hGR
htD) [PEfS'RZ”)T h ©8sh®D
(53)

. “ 2
AR — argsmin} Pg’sz)T — (8 ® h®D))RSR)T (54)
hGR)
N N 2
HRD) _ argmin‘ P(?)hD)T — (AR g §)hRiDT H (55)
h®iD) (
~(RiR2) X ~ PP —(RiRy)T||2
— argmin [PSRRPT_ (H6R) o 8@ A®PHR " (56)
—(R{Ry)
h
The solutions of Eqgs. (51)-(56) are given by
(ﬁ(sm )®ﬁ(R1D))*
Hﬁ(SRl)H%,Hﬁ(RID)H%
R R (R2D) )+
- l[P(5R1D) p(D) piskifD)] (" Poh™ ) (57)
—3L0® ) ) [|h¢R2)| 12| [hR2P) 3 ’
<ﬁ($R1 ) ®E(R1 Ry) ®ﬁ(R2D)>*
LIRSt 2R
£(SRy) o |+
gh 2 ®s)
N 1 [[RGR2)[12.113]13
(Ry;D) __ (SR,D) (SR R,D) R
h = E[sz P ] (ﬁ(SRw@H(R‘RZ’@g S E (58)
~ ~(R{Ry)
RS20 12118112
ech(RD) \=
(ssh”)
~ 1 18113 [R®1D2}12
(SRy) __ (SR,D) (SR{R;D) R
hr) — E[P(B)l P(4)1 2 ] (H(R1R2)®§®ﬁ(R29))* B (59)
~(R1Ry) ~
12118112 1R®2) 12
ﬁ(SRz) . P(SRZD) ( (g ® h(RzD))* ) (60)
=3 = £ '
18113 - [|h®:D)]|2
j&n) _perpy (B @8)* (61)
) hsrO(12. (15112 )
[[hCRO||5 - [[8]]5
ﬁ(R1R2) pORiRaD) (hSR) @ § @ hRD))* 62
) [[RGRO (|2 [13][2 - |[A®D) |12 ) (62)
2° S||2|| 2 ||2

From steps (57)-(62) the process is repeated until convergence
is achieved. The relative error at the end of the ith C-ALS iteration
is given by

1B P
I = = 1m0
IP[2

where P is the block matrix that concatenates column-wise the
three unfoldings Pg';lD), Pg’;ZD), and nglRZD), while P is its re-
constructed version from the estimated channels and symbols. The
convergence at the ith iteration is declared when |e;_; — ;| < 1075,

The C-ALS algorithm is summarized in Algorithm 2.

(63)

6. Simulation results

In this section, we evaluate the performance of the C-SVD and
the C-ALS receiver in terms of symbol error rate (SER), through-
put, normalized mean square error (NMSE) for channel estimation,
and computational complexity. The results are averaged over L =
10* Monte Carlo runs and each run corresponding to an indepen-
dent realization of the channels, symbols, and noise. The channel
matrices are assumed to have i.i.d. complex Gaussian entries with
zero-mean and unitary variance, except for the simulation results
of Section 6.5, where the average channel power is varied to con-
sider the effect of path loss on the cooperative links.

Otherwise stated, 64-QAM signals are assumed and the trans-
mitted symbols are normalized at each Monte Carlo run to unity
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Algorithm 2 C-ALS.

1: Initialize randomly ﬁ((JRZD), ﬁ(()SR‘), EBSRZ), ﬁ(()RlD) and ﬁ(()Rle) ;
it=0;

2 it=it+ 1;

3: Calculate the estimate for:
S;c using Eq. (57)
ﬁi(tRzD) using Eq.
B
B
i
2~(RyRy)
h; using Eq. (62)

4: Return to step 2 and repeat until convergence;

s: Apply the unvec operator to recover S, H®1D) H®RD) HGR),
]:[(SR2> and ﬁ(RlRZ)'

58)
59)
60)
61)

o~

using Eq.
using Eq.

—

using Eq.

—

—A—C-ALS
—aO —C-SVD
—+ — Comb ALS from Ref.[24] | 7
—< — Z.F. with perfect CSI

SER

10®

0 5 10 15 20 25 30 35 40
ES/NO in dB

Fig. 4. Proposed receivers vs the iterative proposed in [24].

symbol energy (Es = 1) for each data stream, i.e., E[S"S] = NIg. The
SER, throughput, and NMSE curves are plotted as a function of the
average Eg/Ny. At each run, the Eg/Ny ratio is set by controlling the
noise variance at the relays and the destination (assumed to be
equal). The coding tensors C, W and 7T are normalized by the fac-
tors 1/\/F1RM5, 1/\/F2MR1M51 and 1/,/FMg,Ms,, respectively, to
ensure that for P =RMs, | = Ms, Mg, and K = Mg, M,, the coding
tensors do not provide any power enhancement. Note that, with
this normalization, for P>RMs, | > Mg, Ms, and K > Mg,Ms,, the
effective coding matrices satisfy ZWZ®OH = BI, where /B is the
power enhancement factor, with i = {1, 2}.

6.1. Symbol error rate performance

We first evaluate the receivers’ performance in terms of their
symbol error rate and compare with the one presented in [24].
The simulated scenario is the following: N =10, R=2, Mg =2,
Mp=4,P=4, |[=K=2, M51 =M52 =1, MR1 :MR2 =2, and F =
RMs, F, = Mg, Ms,, i3 = Mg,Ms,. For the system in [24], a 4-QAM
constellation is considered, the number of pilot symbols per time-
slot is Np = 4 and the number of time-slots K = 10. The parameters
were chosen properly to ensure that both systems have the same
spectral efficiency. Also, in order to have a reference, we simulate
a Zero-Forcing (ZF) receiver with perfect CSI, using Eq. (51). Fig. 4
shows that by comparing the C-SVD with the C-ALS, the perfor-
mance is almost the same. However, comparing with the system

0 - - - - - - -
=@ C-ALS
-5 == = C.SVD
N m=af= = Comb ALS from Ref.[24]

-10 + .

151

25

NMSE in dB

-30

-40 F

-45

50 . . . . . . .
0 5 10 15 20 25 30 35 40

ES/N0 in dB

Fig. 5. Normalized mean square error of the system effective channel.

in [24], our proposed receivers show a remarkable gain over the
Comb-ALS. This is due the fact that the proposed approach ex-
ploits the space-time diversity using space-time coding tensors at
the source and relay, while the system in [24] is a supervised one
with a long pilot sequence and does not apply any space-time cod-
ing at the source. In addition to this performance gain, since our
proposed receivers are based on Nested Tucker models, they can
exploit a more flexible system design than the ones proposed in
Ximenes et al. [22] and Cavalcante et al. [24], which are based on
the Nested PARAFAC and PARATUCK-2 models, respectively. More
specifically, the proposed receivers can operate with relay stations
having different numbers of transmit and receive antennas, in con-
trast to the ones in Ximenes et al. [22] and Cavalcante et al. [24].
Such a design flexibility is crucial since we can properly choose the
number of transmit and receive antennas at the relays to fulfill the
design requirements in (43) and (44) using small code lengths (J
and K).

6.2. Channel estimation performance

The NMSE is given as
(64)

L i 2
H,-H

NMSE = lz ” 0] (21)||F
L&= " [Hgll

where H represents all channel matrices: HS®), HRR) and H(RP), and
L is the total number of Monte Carlo realizations. In order to com-
pare with the system in [24], we compute, in Fig. 5, the NMSE of
the effective estimated MIMO channel without tensor space-time
coding (for this scenario, Ms, = Ms, =2 and J = K = 4), which is
given by:

X (SR1D) H®RD SR
X (SR2D) HRD)SR2) ST (65)
X (SRiR2D) H®RD) [ RiR)(SR1)

s

It can be observed that our rank-one receivers provide a perfor-
mance gain over the one proposed in [24]. This can be attributed
to the fact that the proposed solution has an efficient noise sup-
pression, due to the pre-processing stage and coupled rank-one ap-
proach. In Fig. 6, we present the individual channel NMSE perfor-
mance of the proposed C-SVD and C-ALS receivers. It can be no-
ticed that the relay-destination channels are estimated with higher
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=—®—C.ALS (H®R))
== C.ALS (HR.D)) |1
=—@==C.ALS (HP\R)

o 2 =1 = c.svD H®R)) |7
J= =0 = c-svD HRR)

w -30 =1 = c-svD (H".D)

=

=z

0 5 10 15 20 25 30 35 40 45
ES/NO in dB

Fig. 6. Normalized mean square error of estimated channels.

18 T T T T T T T T
=== C-ALS (Two-Hop with DFT Cod.)

16 +C-ALS (Three-Hop with DFD Cod.) i
=3¢ = ALS of [23] (Two-Hop with our DFT Cod.)
m=== ALS of [23] (Two-Hop with Random Exp. Cod.)

14 ==l = Comb ALS of [24]. B

Iterations

0 5 10 15 20 25 30 35 40 45
Eg/Ny indB

Fig. 7. ALS iterations for convergence.

accuracy than the relay-relay channel and source-relay channels, as
expected. Such results can be explained by the fact the for relay-
destination channels the signal has already be encoded by three
space-time coding tensors, for relay-relay channels, the signal was
encoded by two tensors, and for source-relay channels, the sig-
nal was encoded only at the source. Comparing the proposed re-
ceivers, starting from the source-relay channel estimation, which
is the same for both, it can be noticed that for relay-relay and
relay-destination channels, the C-SVD receiver offers a small gain
in performance over the C-ALS receiver.

6.3. ALS iterations

In Fig. 7, we plot the total number of iterations required for the
convergence of the C-ALS receiver. As a reference for comparisons,
we also plot the convergence of the Nested-Tucker based ALS re-
ceiver of Favier et al. [23], which solves the same problem but us-
ing a different tensor model. Therein, the authors also proposed
a random exponential design for the space-time coding tensors,
while our approach assumes the proposed orthogonal tensor code
design based on a exact Khatri-Rao factorization of the DFT matrix.
We can observe that the proposed tensor code design results in a
significantly lower number of iterations required for convergence,
corroborating the importance of the tensor code structure at the
receiver.

5 X 10° . . . . . . .
+Pre-processing step
45F | = © =C-SVD: S
= A = csvD: HRD
41 | = P =c-svD: HR)
asl |~ © = c-svp: HR,D
: —P—c-svD: HER)
3l | = = =c-svD:HRR,)
@ b= C-ALS: E/N, = 25 dB
G 25 |==@==C-ALS:E(/N,=10dB
= s Comb. ALS Ref.[24]

MD receiving antennas

Fig. 8. Number of FLOPS varying the Mp receiving antennas.

6.4. Computational complexity

In this experiment we evaluate the computational complexity of
each semi-blind receiver, in terms of floating-point operations per
second (FLOPS). Given matrices A € C™" and B € C"*P, the num-
ber of FLOPS associated with the multiplication of these two matri-
ces is given by O(4(mnp)) (neglecting the additions). For the Kro-
necker product, the total FLOPS is ©(4(mn?p)), while for the com-
putation of the largest singular value and largest eigenvector we
opt for the Power Method approach instead of computing the SVD
of a rank-one matrix, for being a cheap choice in terms of compu-
tational complexity (see [37]). The Power Method leads to a cost
of I(n®m + n?) (neglecting the additions and vector normalization)
FLOPS, where I is the number of iterations of the Power Method, in
which, in our case, for dealing with approximately rank-one matri-
ces, I = 1. We compare our proposed receivers with the one in [24].
We can observe in Fig. 8, that the receiver in [24]| needs less com-
putational effort than the ours. However, in terms of performance
(SER and NMSE) a significant performance gain over the receiver
in [24] can be observed in Figs. 4 and 5. Comparing the C-SVD and
C-ALS, the first can benefit from a parallel computation, as shown
in Fig. 3, while the second one is more attractive at higher Es/Ny
values, due to the smaller number of iterations required for con-
vergence (Fig. 7).

6.5. Throughput performance

In a final experiment, we study the performance of the C-SVD
receiver in terms of throughput computed in bits per channel use,
which is the rate of the transmitted information (NR) over the to-
tal redundancy in a multi-relaying scenario with a given number of
phases. This study provides an insight into the trade-off of the pro-
posed receiver when different modulation and coding schemes are
considered. We compare the performance of the proposed three-
phases (three-hop) system with a two-phases (two-hop) system
(the case where the source is assisted only by Relay 1, i.e., only
the signal X®R1D) is considered). In order for both system have the
same spectral efficiency, the following parameters were chosen:

 Three-Phase System: N =10, R=2, Mg=2, Mp=4, Ms, =
MSZ :1, MRl ZIVIR2 =2]=K:2 and P = 4.

o Two-Phase System: N =10, R=2, My =2, Mp =4, Mg, =4
Ms, =2,J=8and P =4.
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Fig. 9. Throughput for different modulation schemes and code length, P and J val-
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Fig. 10. SER for different modulation schemes and code length, P and J values. P
values.

In order to evaluate the performance in a more challenging sce-
nario, we assume spatially correlated channels, by adopting the fol-
lowing the classical model:

H= (RRx)l/zHW(RTx)H/zs (66)

where Rgy and Ry, are the receive and transmit correlation ma-
trices, respectively and Hy, is a spatially white channel matrix
whose coefficients follow a zero-mean circularly-symmetric com-
plex Gaussian distribution. The correlation factor p for each chan-
nel entry is shown in Figs. 9 and 10.

The throughput is calculated according to the following for-
mula:

T = (1 — PER) Trax, (67)

where PER stands for the packet error rate and Tpax is the maxi-
mum achieved throughput which, for the two- and three-hop sys-
tems, are respectively given by

T® _ Rlog, (M®)

max — P(l +]) ’ (68)

R1 M®
O = 0g, (M®™) , (69)
P(1+]J+K+JK)
where M@ is the number of bits per symbol of the M-QAM con-
stellation used by these systems, i =2, 3. In this work, we adopt
the following mapping from BER to PER [38]

PER =1 - (1 — BER)", (70)

where b, = Nlog'zw(i) is the number of bits of a packet. Also, defin-
ing d as the distance between the source and destination, we con-
sider the following positioning of the relays

d®f) =0.6d d®D =0.5d
dOR) =0.5d d®DP =0.6d d®R) =0.6d, (71)

where dGRD) | d®1D) gGRy) - d(ReD) and dRiR2) are the distances be-
tween the source and Relay 1, Relay 1 and destination, source and
Relay 2, Relay 2 and destination, Relay 1 and Relay 2, respectively.
The path loss follows the classical model

P}gozpr[%]y, (72)

where d(()i) and y are, respectively, the reference distance for the
ith link in (71), and the path loss exponent (y = 3), while Pr =
NR is the total transmitted signal power. Since the two-hop system
only has one relay to assist the source, the modulation scheme and
the code length (P, J, or K) are adjusted to ensure that all systems
compared have the same rate.

In Fig. 9, it can be noticed that the three-hop system achieves
the maximum rate in a lower Eg/Ny range than the two-hop sys-
tem, even with the two-hop system having more antennas at the
relay station compared to the relays in the three-hop system. The
simulation results in Fig. 10, which show the SER performance,
corroborate our conclusions in Fig. 9, showing that the proposed
three-hop system is more attractive than the two-hop system in
this scenario.

7. Conclusions

In this paper, we have proposed two semi-blind receivers for
multi-relaying MIMO systems by coupling rank-one tensor approx-
imations problems for multiple cooperative links after space-time
combining at the destination. We show that the rank-one ap-
proach combined with orthogonal codes provides an excellent per-
formance in comparison with the supervised receiver proposed in
[24]. The C-SVD receiver offers closed-form joint channel and sym-
bol estimation that can benefit from parallel processing, being the
preferable solution for low signal to noise ratios, while the C-ALS
receiver offers a better performance-complexity tradeoff for higher
signal to noise ratios. Moreover, our throughput results using dif-
ferent modulation and tensor coding schemes have shown interest-
ing tradeoffs between systems with two and three -hop, for scenar-
ios where the code length of the space-time coding tensors at the
relays (J and K) is small. Perspectives of this work include the gen-
eralization of the proposed semi-blind receivers to multiuser sce-
narios, while taking into account more realistic effects such as tim-
ing and carrier frequency offsets.
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Appendix A. Tensor Coding Design

We propose an orthogonal design for the space-time coding
tensors used at the source and relays. The resulting coding struc-
ture is exploited in the first step of the proposed semi-blind re-
ceiver to decode the received signals at low-complexity, before
joint channel and symbol estimation.

First, we impose a PARAFAC structure for each coding tensor
used at the source, Relay 1 and Relay 2, as follows

C= Zgy[:l X1 C1 X2 CZ X3 C3 € (CM5XRXP (A1)
W= 1-3'[:2 X1 W] X2 Wz X3 W3 S (CMSl Mg, xJ (AZ)
T = I3,Fj X1 T1 X2 Tz X3 T3 S CMSZ *Mg, XK, (A3)

where C; e (CMSXF], G e (CRXFl, C e (CPXFl, W; e (CMsl XFZ, W, e
cMriB Wy e %R, Ty e Y528 T, e B and T3 € CK*B are
the factor matrices of the tensors C, W and T respectively.

In order to simplify the notation, we define z;.p and zf{? as the
effective coding vectors

z{)) = vec(C, @ W j), e CM M M1 (A4)
2 = vec(Cl, T ;) e CMaMMuMot, (A5)

Since the only difference between zﬁ) and z,(;) is the space-time
coding tensor at the relays, and noting that these tensors both have
a PARAFAC structure, we can apply Properties (1), (2), (3) and (4) in
Eq. (A.4), yielding

z{)) = vec(C;D,(C3)C] ® WD, (W3)W}) (A.6)
= vec[(C; ® W1)(Dp(C3) ® Dj(W3))(C; @ W»)'] (A7)
=[(C; @ W) o (C; @ W1)](C3, @ W3))", (A8)

where C3, and W3j are pth and jth row from C3 and Ws,
respectively. By stacking the JP vectors as columns of Z(D ¢

cMs RMr,Ms>JP  and  defining G; = (C; @ W;) e cVsi®Bh ¢, —
(CEoeW,) e (CMR] MSXFZF], G3=(CG3W3) e (C]PXFZFl, we have
1) _ [,(D (1) (1)
2V =z}, 7
= (Gz < G] )G—g (Ag)

In the same way we can apply the steps in (A.6)-(A.8) to

Eq. (A.5) and derive the matrix Z? e ¢Ms;RMr,Ms<KP
2 2) 2) )
7?2 _ [21, e Zg e Igp
= (B; oBy)Bj, (A10)
where B; = (G, ®Ty) e C"FBF1 B, — (€, @ T,) e cMRMs<BF!

and B3 = (C3®T3) € CKPxEF1,

From (A.9) and (A.10), it is clear that the space-time filters Z(!)
and Z?) have a PARAFAC structure. Such a structure is exploited to
ensure Z(1) and Z() are semi-unitary, so that the macthed filtering
steps (36) and (38) can be applied. The semi-unitary property of
the space-time filters is proved in Appendix B.

Appendix B. Proof of the Semi-unitary Property

As previously defined in Appendix A, let us consider the fac-
tor matrices of the coding tensors C; e CMs*<fi, C, e CR*Fi, C5 ¢
(CPXFI, W; € CMS] XFZ, W, e (CMR] XFZ, W; e (C]XFZ, T, € (CMSZ XF3, Ty €
M B and T; € CK*B. Given the PARAFAC structures for Z() and
Z?) in Eq. (A.9) and (A.10) respectively, our goal is to design these
factor matrices such that Z(MZz(MH = T, R, M and Z@Z@H =
Tty Ry, M- Let us take Z(1) as an example, and define the matrix
20 Ms, Mg, MsRxJP o

zV =mz®
=T[(C; @ W;) o (C; ® W1)](C3 @ W3)T

=[(C20C1) ® (W2 0 W1)](C3 @ W3)T, (B.1)

where IT is a permutation matrix that exchanges the rows of Z(1)
in order to obtain Eq. (B.1). Note that if ZI(,U has orthogonal rows,

then Z(1) would also have orthogonal rows, since a permutation
matrix is orthogonal. Defining as C=C, ¢ C; € CMsRxFi and W =
W, oW ¢ cMsiMr B and replacing them in Eq. (B.1), we have

ZVZ(" = (Ce W)GG;(Co W)H. (B.2)

Noting that G3 = C3 ® W3, and choosing C3 and W3 as DFT matri-
ces (assuming P =F; and J = F), we have:

1
GG = g5 (G W) (G Ws)’
1
- ﬁ(cgcg ® WIW3)

=Igg,

where —1

5 is the normalization factor for the DFTs matrices. The

condition ZI(,”Z,(,”H = IMS] RMy, Ms is now dependent on the choice

of Ce Cchi*h and W e C2*R, Choosing a DFT structure for these
matrices implies

1 ——H —H

ZVzZM =~ (CC) @ (WW)

P P = RMsMg, Ms,

= Irmghe, s, -

(B.3)

Since each column of the DFT matrix is a Vandermonde vector, it
turns out that C and W can be factorized exactly as the Khatri-Rao
product of two or more lower-dimensional matrices. As example,
consider the DFT structure for C as

1 1 1 1
1 10 w? whi-1
E: i 1 w? w? w?E-1 7
VR : :
1 wf-1 @2-D wF-DE-1)

where w = e~27/Fi The (f; 4+ 1)th column of C can be decomposed
as:

1 M 1
w w
— 2 2
=] ¢ ® @ . (B4)
wf1 ('Rfl) wf] (1;/15*1)

Therefore, factorizing the F; columns of C implies that C = Cy ¢ Cy,
from which we find C; and C,. The same is valid to find W; and
W, from W.
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M, My, MsRx<KP

In the same way as for ZI(,”, we have Zl(,z) eC e-

fined as
% =Mz@

=M ®Ty) o (C;oT)]|(C;Ts)"

=[(C20C) ® (T, 0T)](C;®T3)", (B.5)
where IT is a permutation matrix that exchanges the rows of Z(2)
defined in Eq. (A.10). In this case, defining T =T, ¢ T; € CVR:Ms;*B
and noting that B; = C3 ® T3, we have
ZPZP" — (CoT)BIB;(Co D" (B.6)
From Eq. (B.6) we can easily see that choosing T3 and T as DFT ma-
trices, ZI(,Z) has orthogonal rows, i.e., Z}(,Z)Zl(,z)"l = lMSZMRz MR, from
which we can conclude that Z&Z®H — Tutg, R, M- Applying the

factorization (B.4) to the columns of T we get T; and T,. Finally,
it remains to prove the semi-unitary property of W3y, which from
Eq. (A.2) is written as

W{3) = (W, o W))W] (B.7)
— W,
Since W and W3 are assumed to be DFT matrices, we have
* W AT
Wi, Wi;) = WWIW5W
Wi, W'
= Ty My, - (B.8)

which completes the proof. O

Appendix C. Code Design Requirements

As mentioned in Section 4.1, the matrices Z(V), Z and W{B)

must have full row-rank to fulfill the semi-unitary property. Let us
first recall the following properties

e rank(A ® B) = rank(A)rank(B)
e rank(AB) = rank(A) if B is a full rank matrix.

The rank of Z(V) its equal to the rank of Zﬁ,”, and is given by
rank(Z\") = rank([C @ W]G}). (C1)
The rank of Gg can be expressed as

rank(G}) = rank(C} @ W1)

= rank(C})rank(W}). (c2)
Since C; is of size PxF; and W3 of size Jx F,, for Gl e CR2fiJP
to have full row-rank matrix, we must have rank(C3) = F and

rank(W3) = F, which requires P> F; and J>F,. Since the matrix
Gg is full row-rank, the rank of Zl(,l) is given by

rank(Z") = rank(C @ W)
= rank(C)rank(W)
= rank([C; ¢ C;])rank([W; o Wq]). (C3)

For ZI(,]) to have full row-rank, Ce CRMsx<Fi and W e cMsiMr <R
must also have a full row-rank, which requires F; > RMs and F, >
Mg, Mg, . Combining these conditions, we arrive at the inequalities
given in (42)-(43). Finally, computing the rank of Z,(,Z) defined in
(B.5), and using (C.1), we arrive at the condition K > F; > Mg, My,
given in (44). O
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